《机电工程》杂志,月刊( 详细... )

中国标准连续出版物号 ISSN 1001-4551 CN 33-1088/TH
主办单位浙江省机电集团有限公司
浙江大学
主编陈 晓
副 主 编唐任仲、罗向阳(执行主编)
总 经 理罗向阳
出 版浙江《机电工程》杂志社有限公司
地 址杭州市上城区延安路95号浙江省机电集团大楼二楼211、212室
电话Tel+86-571-87041360、87239525
E-mailmeem_contribute@163.com
国外发行中国国际图书贸易总公司
订阅全国各地邮局   国外代号M3135
国内发行浙江省报刊发行局
邮发代号32-68
广告发布登记证:杭上市管广发G-001号

在线杂志

当前位置: 机电工程 >>在线杂志

基于EMD与倒谱分析的轴承故障诊断*

作者:焦卫东1,2,朱有剑1 日期:2009-02-23/span> 浏览:4149 查看PDF文档

基于EMD与倒谱分析的轴承故障诊断*

焦卫东1,2,朱有剑1
(1.江西理工大学 机电工程学院,江西 赣州 341000; 2.嘉兴学院 机电工程学院,浙江 嘉兴 314001)

摘要:提出了一种基于经验模态分解与幅值倒频谱分析的轴承故障诊断方法。该方法首先对外圈故障信号作传统的傅里叶幅值谱和幅值倒频谱分析,未能明显地找到故障特征;然后对故障信号做经验模态分解,并对分解出来的第一层本征模函数作倒频谱分析,有效地提取出了故障特征;最后,用该方法分别对具有内圈故障和滚动体故障的轴承故障信号作分析,也有效地提取出了故障特征。实验结果表明,通过联合经验模态分解和倒频谱分析,能有效并且准确地提取出轴承的故障特征频率。
关键词:经验模态分解;倒频谱;滚动轴承;故障诊断;本征模函数
中图分类号:TP306;TN911.72文献标识码:A文章编号:1001-4551(2009)02-0018-04

Bearing fault diagnosis base on EMD and cepstrum analysis
JIAO Wei-dong1, 2, ZHU You-jian1
(1. Mechanical and Electrical Engineering College, Jiangxi University of Science and Technology, Ganzhou 341000 China;
2. Mechanical and Electrical Engineering College, Jiaxing University, Jiaxing 314001, China)
Abstract: A method based on empirical mode decomposition (EMD) and amplitude cepstrum analysis for bearing fault diagnosis was introduced. Firstly, the fault signal was analyzed by traditional Fourier transformation and amplitude cepstrum analysis, but detected the fault feature ineffectively. Then, the outer-race faults signal was decomposed by the EMD, the first intrinsic mode function(IMF) was analyzed by cepstrum spectrum and extracted the fault feature effectively. At last, the fault bearing signals with inner-race and ball faults were also analyzed separately, and the fault feature was obtained. The experimental results show that, the frequency of bearing fault is extracted effectively and correctly form the vibration signals by combining the EMD with cepstrum analysis.
Key words: empirical mode decomposition(EMD); cepstrum; rolling bearing; fault diagnosis; intrinsic mode function(IMF)
参考文献(References):
[1]钟秉林,黄仁.机械故障诊断学[M].3版.北京:机械工业出版社,2006.
[2]杨宇,于德介,程军圣.基于经验模态分解的滚动轴承故障诊断法[J].中国机械工程,2004,15(10):908-911
[3]黄建鸿.基于小波包分析的滚动轴承智能诊断[D].南昌:南昌大学信息工程学院,2005.
[4]王朝挥,张来斌.基于EMD和HT时频分析方法的滚动轴承故障诊断[J].石油机械,2007,35(5):32-34
[5]HUANG N E, SHEN Z, LONG S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-Stationary time Series analysis[J]. Proc .Soc.Lond.A, 1998, 454(12): 903-995
[6]LOH C H, WU T C, HUANG N E. Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses[J]. Bulletin of the Seismological Society of America,2001,91(5):1339-1357
[7]薛年喜.MATLAB在数字信号处理中的应用[M].北京:清华大学出版社,2003
[8]袁云龙,迟军.基于小波分析的滚动轴承故障诊断[J].机电工程,2008,25(6):31-34.



友情链接

浙江机械信息网