《机电工程》杂志,月刊( 详细... )

中国标准连续出版物号 ISSN 1001-4551 CN 33-1088/TH
主办单位浙江省机电集团有限公司
浙江大学
主编陈 晓
副 主 编唐任仲、罗向阳(执行主编)
总 经 理罗向阳
出 版浙江《机电工程》杂志社有限公司
地 址杭州市上城区延安路95号浙江省机电集团大楼二楼211、212室
电话Tel+86-571-87041360、87239525
E-mailmeem_contribute@163.com
国外发行中国国际图书贸易总公司
订阅全国各地邮局   国外代号M3135
国内发行浙江省报刊发行局
邮发代号32-68
广告发布登记证:杭上市管广发G-001号

在线杂志

当前位置: 机电工程 >>在线杂志

基于类内分块PCA方法的人脸表情识别

作者:龚婷1,2,胡同森1,田贤忠1 日期:2009-08-18/span> 浏览:3693 查看PDF文档

基于类内分块PCA方法的人脸表情识别

龚婷1,2,胡同森1,田贤忠1
(1.浙江工业大学 信息学院,浙江 杭州 310032; 2.浙江科技学院 信息学院,浙江 杭州 310023)

摘要:主成分分析方法(PCA)是目前广泛应用在人脸等图像识别领域的重要手段。为了更准确地识别人脸的表情信息,有效抽取出图像中对表情识别贡献较大的局部特征,提出了一种类内分块PCA方法对人脸表情进行特征提取。首先对图像进行分块,再对分块得到的所有子图像块利用PCA方法进行鉴别分析,并计算出各类训练样本的子空间,然后计算测试样本到各类子空间的距离,最后输入最近邻分类器得到分类结果。在JAFFE人脸表情库上进行的实验结果表明,使用该方法后获得的识别率优于传统的PCA方法。
关键词:主成分分析方法;特征提取;类内分块PCA;人脸表情识别
中图分类号:TP391文献标识码:A文章编号:1001-4551(2009)07-0074-03

Human face expression recognition based on withinclass modular PCA
GONG Ting1,2, HU Tongsen1, TIAN Xianzhong1
(1.College of Information Engineering, Zhejiang University of Technology, Hangzhou 310032, China;
2.College of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)
Abstract: Principal component analysis (PCA) is the important technique widely used in the areas of images recognition such as human face. Aiming at recognizing the information of human face expression, extracting the more important local feature for expression recognition, the technique of withinclass modular PCA was presented. The images were divided firstly and the PCA method was directly used to the subimages obtained from the previous step. Then the subspaces for each class of training samples were calculated. Finally, the distances from the tested samples to the subspace were computed and the classified recognition was carried by the nearestneighbor. The results of the experiment in the Japanese female face expression database indicate that the recognition rate of the modular PCA is obviously superior to that of traditional PCA.
Key words: principal component analysis (PCA); feature extraction; withinclass modular PCA; facial expression recognition (FER)
参考文献(References):
[1]YANG Jian, YANG Jingyu. Why can LDA be performed in PCA transformed space[J]. Pattern Recognition,2003,36(2):563-566.
[2]杨静宇,金忠,郭跃飞.人脸图像有效鉴别特征提取与识别[J].南京理工大学学报,2000,24(3):193-198.
[3]TURK M, PENTLAND A. Face recognition using eigenfaces[C]//Proc. Computer Vision and Pattern Reorganization Conference,1991:586-591.
[4]胡同森,刘玉彪,田贤忠,等.基于Gabor滤波和类内PCA的人脸表情识别研究[C]//第四届和谐人机环境联合学术会议,2008: [s.n.].
[5]李俊华,彭力.基于特征块主成分分析的人脸表情识别[J].计算机工程与设计,2008,29(12):151-153.
[6]边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,1999.



友情链接

浙江机械信息网