《机电工程》杂志,月刊( 详细... )

中国标准连续出版物号 ISSN 1001-4551 CN 33-1088/TH
主办单位浙江省机电集团有限公司
浙江大学
主编陈 晓
副 主 编唐任仲、罗向阳(执行主编)
总 经 理罗向阳
出 版浙江《机电工程》杂志社有限公司
地 址杭州市上城区延安路95号浙江省机电集团大楼二楼211、212室
电话Tel+86-571-87041360、87239525
E-mailmeem_contribute@163.com
国外发行中国国际图书贸易总公司
订阅全国各地邮局   国外代号M3135
国内发行浙江省报刊发行局
邮发代号32-68
广告发布登记证:杭上市管广发G-001号

在线杂志

当前位置: 机电工程 >>在线杂志

基于加权概率神经网络的齿轮箱抗噪故障诊断*

作者:崔逊波,邹俊,阮晓东,傅新 日期:2010-03-26/span> 浏览:3726 查看PDF文档

基于加权概率神经网络的齿轮箱抗噪故障诊断*

崔逊波,邹俊,阮晓东,傅新
(浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310027)

摘要:针对齿轮箱现场故障诊断易受噪声干扰、诊断精度低的问题,提出了一种基于区分性权重概率神经网络的故障诊断方法。该方法考虑了不同子带特征受噪声的污染程度不同,提高噪声影响小的特征在诊断中的权重,降低噪声影响大的特征在诊断中的权重,以提高诊断的噪声鲁棒性,最终实现了齿轮箱故障的诊断。试验研究结果表明,与BP神经网络和概率神经网络诊断相比,该方法具有较高的诊断正确率和较强的诊断鲁棒性;并且该方法中平滑度参数对故障诊断精度影响不大,可以避免该参数选择困难的问题,具有良好的工程应用前景。
关键词:故障诊断;加权概率神经网络;抗噪;齿轮箱
中图分类号:TH137文献标识码:A文章编号:1001-4551(2010)02-0054-04

Noise robustness research in gearbox fault diagnosis based on weighted probabilistic neural network
CUI XunBo, ZOU Jun, RUAN Xiaodong, FU Xin
(The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China)
Abstract: In order to solve the problem that the fault sigal of gearbox is difficult to detect and the diagnosis is easily disturbed by noise, a fault diagnosis method based on weighted probabilistic neural network(WPNN) was presented. The different levels of noise pollution on different characteristics were taken in to consideraion, the noise robustness was improved, eventually the gearbox fault diagnosis was realized. Comparing with BP neural network(BPNN) and probabilistic neural network(PNN) in the experiments. The method has higher diagnostic accuracy and noise robustness, meanwhile, it can reduce the difficulty of choosing correct smothing parameter, thus has a good industrial application.
Key words: fault diagnosis; weighted probabilistic neural network(WPNN); noise robustness; gearbox



友情链接

浙江机械信息网