《机电工程》杂志,月刊( 详细... )

中国标准连续出版物号 ISSN 1001-4551 CN 33-1088/TH
主办单位浙江省机电集团有限公司
浙江大学
主编陈 晓
副 主 编唐任仲、罗向阳(执行主编)
总 经 理罗向阳
出 版浙江《机电工程》杂志社有限公司
地 址杭州市上城区延安路95号浙江省机电集团大楼二楼211、212室
电话Tel+86-571-87041360、87239525
E-mailmeem_contribute@163.com
国外发行中国国际图书贸易总公司
订阅全国各地邮局   国外代号M3135
国内发行浙江省报刊发行局
邮发代号32-68
广告发布登记证:杭上市管广发G-001号

在线杂志

当前位置: 机电工程 >>在线杂志

参数优化的IZOA-SVM机械设备故障诊断方法

作者:赵月静,邢天祥,秦志英. 日期:2024-10-30/span> 浏览:353 查看PDF文档

参数优化的IZOASVM机械设备故障诊断方法*
赵月静,邢天祥,秦志英*

(河北科技大学 机械工程学院,河北 石家庄 050018)



摘要:在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOASVM)的故障诊断方法。首先,引入了柯西变异和反向学习的改进策略到斑马优化算法(ZOA)中,提出了改进的斑马优化算法(IZOA),旨在改善原有斑马优化算法在迭代后期容易陷入局部极值等问题,从而有效增强了其全局搜索能力;其次,利用IZOA优化支持向量机(SVM)的核参数g和惩罚参数c以寻找SVM最优参数组合[c,g],并构建了IZOA-SVM模型;然后,计算了样本的13个时域特征以构成特征向量,并将特征向量分别输入到IZOA-SVM模型、斑马优化算法优化支持向量机(ZOA-SVM)模型、粒子群算法优化支持向量机(PSO-SVM)模型、遗传算法优化支持向量机(GA-SVM)模型和支持向量机模型,进行了故障分类;最后,通过旋转机械振动及故障模拟试验验证了该方法的有效性。研究结果表明:IZOA-SVM模型在分类准确率方面得到了明显的提高,达到了98.33%;该模型能够精准而稳定地识别故障类型,提高故障识别的准确性,在准确率方面相较于其他对比方法表现出更为显著的优势。因此,该方法在全局搜索和故障分类准确性方面都取得了明显的改进,为复杂环境下的故障诊断提供了可参考的解决方案。

关键词:机械设备;旋转机械;故障诊断;改进斑马优化算法;柯西变异;反向学习;支持向量机

中图分类号:TH132.41文献标识码:A文章编号:1001-4551(2024)10-1894-09



本文引用格式:

赵月静,邢天祥,秦志英.参数优化的IZOA-SVM机械设备故障诊断方法[J].机电工程,2024,41(10):1894-1902.

ZHAO Yuejing, XING Tianxiang, QIN Zhiying. IZOA-SVM algorithm with parameter optimization for mechanical equipment fault diagnosis[J].Journal of Mechanical & Electrical Engineering, 2024,41(10):1894-1902.



友情链接

浙江机械信息网